5 Things You Must Consider Before Trying An Oral Appliance for Sleep Apnea

June 1, 2015

Depositphotos_63662341_originalIn my last two posts, I described 7 positive and 5 negative aspects of mandibular advancement devices for obstructive sleep apnea.
If you’re thinking about trying an oral appliance for your sleep apnea, here are 5 things you must consider to maximize the chances it will work for you:
1.  Make sure you’re able to breathe well through your nose. For most people, it’s pretty obvious if your nose is stuffy, but for some others, you won’t know if you have a stuffy nose since you’ve had it all your life. By definition, people with obstructive sleep apnea have smaller facial dimensions so the nose will tend to be stuffier than normal. Whether you use nasal saline, Breathe Rite strips, allergy medications, or even surgery, do everything possible to make sure you’re breathing optimally through your nose before starting your oral appliance treatment. Research has shown that having better nasal breathing will significantly increase your chances of benefiting from oral appliances (and CPAP as well). 
2. Research has shown that people with severe obstructive sleep apnea (AHI over 30) don’t do as well with mandibular advancement devices. It doesn’t mean that it won’t work with you, since everyone is different. This makes sense since having years and years of repeated obstructions will cause your throat tissues to cave in and becme floppy, so moving your tongue forward won’t open up other areas in your throat.
3. If possible have your ENT (otolaryngologist) take a look at your throat using a flexible camera with you lying flat on your back. This position maximizes tongue collapse. Note the air space behind your tongue and then thrust your lower jaw forward, beyond your upper teeth. Make sure you’re not opening your mouth too much, since that will push your tongue backwards. Most people will have significant tongue movement when pushing the jaw forward, but there are some people where the tongue doesn’t move very much, or not at all. I’ve had a number of patients who paid $3000 for an oral appliance which didn’t help, and we found that the tongue doesn’t move at all. Rarely, the tongue can move backwards with the jaw thrust forward. 
You also want the soft palate to open up at least somewhat along with the tongue moving forward. The side of the tongue connects with the soft palate via the palatoglossus muscle. For people with severe obstructive sleep apnea, no matter how much the tongue moves, the soft palate still collapses completely.
4. It’s also important to remember that routine dental x-rays and CAT scans of the throat are usually performed sitting up, so the airway can seem wide open. In many cases, the degree of obstruction can be dramatically more severe when lying down on your back. This is why many of you can’t sleep on your back.
5. Not all advancement devices are equal. I get asked all the time which is the best device. There are literally dozens of different FDA approved mandibular advancement devices. All have their pros and cons. Most experienced dentists will have a handful of favorite options that are used for appropriate patients. Ultimately, it’s the dentist’s experience and follow-up care which is more important than which device is used. Similarly, how and why a surgeon uses a laser is more important than which type of laser he for she uses.
In my practice, if you have mild to moderate sleep apnea, can breathe well through your nose, and can open up the space behind the tongue and soft palate by moving your jaw forward, you have a much higher chance of benefiting from mandibular advancement devices.
If you’ve been successful with an oral appliance to treat your sleep apnea, please describe your experience below. 

7 Most Common Patient Complaints About In-Lab Sleep Studies

May 5, 2015

I can’t tell you how many times patients complain to me about their in-lab sleep study experiences. The vast majority of feedback is about how terrible the night was. Once in a blue moon, I’ll have someone tell me it was the best night of sleep in years. More often than not, it’s usually because there are no children or pets around to keep waking them throughout the night. 
I’ve gotten literally hundreds of different complaints, but here are the 7 top complaints that I get:
1. I didn’t sleep at all. Can they even tell whether or not I have sleep apnea? Patients state that they only slept for one or two hours. Granted, it’s less than ideal. It’s been stated that you need a minimum of 4 hours to solid data to be able to have quality data for analysis. However, If you only slept for one hour, but you stopped breathing 30 times that hour, then you have obstructive sleep apnea with an apnea-hypopnea index (AHI) of 30, regardless of how little you slept. In most cases, enough sleep time is seen, despite very fragmented sleep. Light sleep (Stage N1) can be perceived as being awake, when technically, you’re sleeping.
2. It was too cold. Different labs have different heating or cooling systems. There are standard temperature settings that all accredited labs must adhere to. However, everyone has different preferences, and the technicians should be able to accommodate requests for more blankets or to change the room temperature.
3. It was too noisy to sleep. You may think that bedrooms in sleep labs are soundproof, but they are not. Many labs are in office buildings or stand-alone facilities, so they are just as susceptible noises coming from surrounding areas. You may want to go by the site to see if there’s any construction activity next door. 
4. The technician kept coming in to reattach my leads. Having so many leads attached to your body, it’s inevitable that one or more leads may fall off, especially if you toss and turn a lot. Rather than waste the entire night’s study due to a missing critical lead, it’s better for the tech to come back into the room to reattach the wire to your body. This is one of the disadvantages of a home study. If one important lead falls off, the entire night’s study can be useless.
5.  The bed was too uncomfortable. Everyone has different bed preferences. Most modern sleep labs use high quality beds that are used by high-end hotels. However, some labs still use cots, like what they used to use in the early days 40 to 50 years ago. One way of avoiding this problem is to ask what type of mattress they use. 
6. They had me go to sleep too early/woke me up too early. If your normal sleep time is 12 midnight, then making you go to bed at 9 PM is not a good idea. Waking you up too early can cut off critical times in REM sleep, when you’re dreaming, and most likely to have an apnea. In theory, labs should be able to accommodate for your normal bed times and routines. Ask about these issues before your appointment.
7. No body called me to schedule the sleep study/it’s been two weeks and nobody called me the the results. Different labs have different levels of service, from making the appointment to the aftercare events, including forwarding the test results to your physician in a prompt manner. In some cases, pre-authorization is needed, which may delay things even further. Don’t be afraid to call the sleep lab or your referring physician. Referrals can fall through the cracks occasionally, even with the best sleep labs.
Like with other service-oriented facilities, quality will vary. Do your due diligence by asking others that have gone the sleep lab you’re considering. Online review sites can be helpful, but take everything you read on the internet with a grain of salt. Past experiences from friends or family are probably the most helpful.
What other positive or negative experiences have you had while undergoing an in-lab sleep study? What’s your one piece of advice to a friend or family member that’s about to undergo a sleep study? 

Podcast #6: Creating an Interdisciplinary Dental Airway Team – Interview with Dr. Mark Cruz

April 23, 2015

In this episode, My special guest is Dr. Mark Cruz, who is a dentist in private practice in Dana Point, CA, close to Laguna Beach. He has spent over 10 years educating dentists and doing research at UCLA and is now on the data safety monitoring board of the NIH’s institute for craniofacial research, the dental arm of the NIH. He has collaborated with many sleep luminaries including Dr. Christian Guilleminault, and Dr. David Gozal. 

In this interview, we’ll discuss 

  • What’s the role of the dentist and dentistry as a profession in airway related health?

  • Is the airway wellness concept new for dentistry?

  • Who are the key team members that are needed for airway health? 

  • How can someone find an airway focused dentist or orthodontist in his or her community?

 and so much more.

MP3 download

Dr. Mark Cruz, DDS

Dental Airway Mini-Residency

If you enjoyed this podcast, please go to doctorstevenpark.com/itunes to subscribe, rate this podcast, and leave comments on iTunes. Through your comments and ratings, you can help more people find these podcasts.


The Sleep Apnea–Autism Connection

April 8, 2015

Guest blog by Deborah Wardly, MD

I have written guest blogs (Part 1 and Part 2) in the past about the link between obstructive sleep apnea (OSA) and intracranial hypertension (IH).  We know that apneas can raise intracranial pressure, and that intracranial hypertension can be caused by OSA. I suspect that some of the symptoms of OSA can be explained by increases in intracranial pressure. My most recent paper discusses the idea that it may be the anatomy of the recessed jaw that (outside of respiratory factors which increase intracranial pressure) predisposes these two conditions to go hand in hand. More than likely it is the recessed jaw anatomy that also allows for temporomandibular joint dysfunction to also be present when OSA and intracranial hypertension exist in the same individual.

We have seen increasing rates of most of the chronic illnesses associated with OSA over the last 20 years, to the extent that I have wondered if the human jaw is shrinking more rapidly or has reached a critical point in its shrinkage. Along with adult human chronic disease, we have seen increases in childhood illness, not the least notable of which is autism spectrum disorder.

Interestingly, it has been noted that there are differences in the faces of the autistic children when compared to non-autistic children, and between low and high functioning autistic children. Scientists investigating this phenomenon do not appear to be aware of how facial structure reflects underlying airway patency, or what this might mean regarding an airway etiology of autism. Autistic children are described to have very prominent sleep problems. These problems are well known to pediatric sleep specialists to reflect underlying sleep disordered breathing (SDB). For example, 53% of autistic children have difficulty falling asleep, and 34% have frequent awakenings. These are signs indicating that autistic children have insomnia. Dr. Barry Krakow has eloquently demonstrated that chronic complex insomnia in adults is strongly associated with sleep disordered breathing, and it doesn’t seem likely that the cause in children is very much different.

There are a great many correlations between what is found in autistic children and what is seen in OSA, and there are also many findings in autistic children that could be explained if autistic children have mild intracranial hypertension from birth. For example, leptin, IL-6, and TNFα are elevated in OSA, and in autism. Accelerated head growth in the first year of life and favorable response to substances which decrease brain edema, as are seen in autism, might be explained by intracranial hypertension.   Intracranial pressure in autistic children has never been investigated. I have collected the data available prior to 2013 and presented it in my recently published paper: “Autism, sleep disordered breathing, and intracranial hypertension: the circumstantial evidence.”  If each correlation between autism and OSA, and between autism and intracranial hypertension is thought of as a “puzzle piece” in constructing the answer to the etiology of autism, then I have constructed over 90 pieces of the autism puzzle with the hypothesis presented in my paper. The ASD/OSA hypothesis is four-fold, and requires that: 1) the mother has SDB during her pregnancy, 2) the infant is born with SDB, 3) both mother and infant have variations of the methylation pathway which are then triggered by the SDB, and 4) the infant is prone to intracranial hypertension.  

The idea is that the combination of SDB with the tendency for intracranial pressure to increase, leads to a pattern of increased intracranial pressure early on in development which contributes to autism, compounding the effect from repeated low oxygen levels in the mother’s womb due to maternal SDB.  It is unlikely to present the same as the typical childhood case of intracranial hypertension, because it will vary depending on waxing and waning SDB symptoms. OSA can sometimes cause optic nerve (essentially brain) swelling in the presence of normal intracranial pressures while awake, therefore this process can be very subtle. This hypothesis takes into account most of the findings seen in autism, including the multiple various gene mutations seen between individuals. 

I propose that it is not so much these mutations which cause autism, but it is the underlying methylation problems as triggered by OSA/SDB that leads to random mutations of genes, producing the wide variations seen. The ASD/OSA hypothesis may also account for the association of pesticides with autism development, in multiple ways. Some pesticides have been shown to affect the growth and development of the maxilla and mandible, and it has even been noted that the risk of autism from maternal organochlorine exposure during pregnancy is greatest during the 8 weeks immediately after neural tube closure—this is the embryological period when the face is forming. Surely pesticides can be directly neurotoxic, however if they are found to influence brain swelling then this may add to the brain edema that has already been determined to occur from OSA.

It has also been demonstrated that autistic brains are swollen. If children with autism tend to have recessed jaws that predispose them to not only compression of the airway with OSA, but also compression of their jugular veins preventing easy egress of cerebrospinal fluid (CSF), then this brain swelling becomes more clinically significant and may raise intracranial pressure.

Since the acceptance of my paper for publication, several articles were published which support my hypothesis. In 2013, Shen et al. at the MIND Institute published a study which demonstrated increased extra-axial fluid in infants who later developed autism. They concluded that this suggests an imbalance between CSF production and CSF drainage in these infants. Increased extra-axial fluid has also been seen in children with intracranial hypertension. In intracranial hypertension, the increased pressure is present in this extra-axial space surrounding the brain, pushing in on the brain, as opposed to in hydrocephalus where the increased pressure is present in the ventricles, pushing out on the brain. In December of 2012, Lemonnier et al. published a study demonstrating that bumetanide can be helpful in children with autism, improving autism rating scores and social functioning. Bumetanide is a loop diuretic which has also been used in children with intracranial hypertension, to reduce intracranial pressure. Diuretics are a mainstay of treatment in intracranial hypertension.  

There is another piece of data which is more anecdotal at present. It has been reported that people with intracranial hypertension can have photophobia, and phonophobia: increased sensitivity to light and sound.  (Dr. Park has also noted in his first book that he sees these characteristics in his SDB patients.)  It does not seem to be generally acknowledged however, that most people with intracranial hypertension are significantly sensory defensive. I know this from knowing a great many of them.  Almost 180 of them have compiled their symptoms on this spreadsheet.

If one believes this data, then 79% of patients with intracranial hypertension have auditory hypersensitivity, 33% of patients with intracranial hypertension have olfactory hypersensitivities, and 50% of patients with intracranial hypertension have sensitivity to proximity. These are very similar to the prevalence of these different types of sensory disorders among autistic children.  

I believe that all of these correlations demand further investigation. It has never been determined that children with autism have normal intracranial pressures, and it has never been determined that the majority of autistic children do not have sleep disordered breathing. Miano et al. in 2010 stated that it is not possible to conclude how significant OSA might be in causing the insomnia in autism, because most autistic children do not get sleep studies. Add to this the difficulties encountered in diagnosing mild sleep disordered breathing at your average sleep lab, and it is likely to take a century before we figure out the answers to these questions. Given that it has been predicted that in ten years 50% of all children born will develop autism, we don’t have too much time.  

It has been demonstrated that the degree of symptoms in SDB is inversely proportional to the AHI, therefore I believe that we need to start taking mild SDB very seriously and figure out how to diagnose it outside of the most elite university sleep centers. Given the amount of circumstantial evidence arguing for the ASD/OSA hypothesis, I think that autism researchers must rise to the challenge and rule it out formally before it is dismissed.

If you have a child with autism, does your child show the subtle signs of sleep disordered breathing? Can you hear his breathing when he sleeps? Does he snore sometimes? Does he wake frequently? Does he sleep with his mouth open and head extended? Is he a restless sleeper? Does he fall asleep during the day? Does he have a small lower jaw (“pixie” face)? 

If you are an adult with autism, do you get headaches? Do you hear whooshing sounds in your ears? Do you have visual complaints (symptoms of intracranial hypertension)?

If you are a mother of a child with autism, do you have OSA or symptoms of sleep disordered breathing?  Did you have signs of worsening SDB during your pregnancy?

Announcing the New Book Cover for Sleep, Interrupted

April 6, 2015

New Sleep Interrupted CoverWell over 300 of you voted for the new cover for my book, Sleep, Interrupted. The clear winner by far was choice #4, with 35% of the vote. The three other options were split evenly around 20 to 21%. Personally, I had a preference for #4 as well. We should be uploading this new cover within a few weeks. Thanks for helping me make this important decision.

Stay tuned for your chance to help me choose the cover for my forthcoming book, The Sleep Apnea Solution: Dr. Park’s Complete Guide to Getting the Sleep You Need and the Life You Want.

Attention All Mouth Breathers – 5 Important Reasons Why You Must Breathe Through Your Nose

March 30, 2015

If you’re a chronic mouth breather because of a stuffy nose, you’re not alone. As the weather chills and allergies and colds abound, and nasal congestion becomes a common trend, mouth breathing inevitably follows-especially when you’re sleeping. I’m sure you’ve seen many passengers asleep on the subways and trains, head and pitched back, mouth wide open, and snoring louder than a diesel engine. Mouth breathing can surely ruin your social image, but that’s nothing compared to the havoc it can wreak on your health.


5 Potent Benefits of Breathing through Your nose

One of the most important reasons to breathe through your nose is because of a gas called nitric oxide that’s made by your nose and sinus mucous membranes. This gas is produced in small amounts, but when inhaled into the lungs, it significantly enhances your lung’s capacity to absorb oxygen, increasing oxygen absorption in your lungs by 10-25%. Nitric oxide also can kill bacteria, viruses and other germs. This is why you often hear fitness and yoga instructors emphasize inhaling and exhaling through your nose during workouts.

Also, if you can’t breathe well through your nose, your sense of smell will suffer and therefore your sense of taste, since your smell and taste buds are connected. This can lead to disturbances in your appetite and satiation levels, wreaking havoc on those struggling with weight issues.

Your nose also has vital nervous system connections to your lungs and heart. Not breathing well through your nose can alter your heart rate and blood pressure, as well as increase your stress responses.

Your nose makes about 2 pints of mucous every day. If your nose isn’t working properly and mucous isn’t cleared, the stagnant mucous can lead to infections such as sinusitis or ear infections, not to mention bad breath.

Lastly, not breathing well through your nose can aggravate snoring or obstructive sleep apnea. Nasal congestion alone doesn’t cause obstructive sleep apnea, but it can definitely aggravate it. If your palate and tongue structures are predisposed to falling back easily due to sleeping on your back and muscle relaxation in deep sleep, then having a stuffy nose can aggravate further collapse downstream. Untreated obstructive sleep apnea can lead to chronic fatigue, depression, anxiety, weight gain, high blood pressure, heart disease, heart attack and stroke.

Knowing all these benefits of breathing through your nose, however, doesn’t help much if you don’t know why you’re not able to do so.  To stop mouth breathing, the first thing you must do is to figure out what’s blocking up your nose.

What Can Stop Up Your Nose

Nasal congestion is something everyone experiences now and again. Yet, if you’re trying to prevent this from happening it’s important to explore the various reasons behind why and when this occurs.

Here are five of the most common reasons for a stuffy nose:

“I Have a Deviated Septum

By definition everyone has a slightly crooked (deviated) nasal septum. There are various reasons for having a deviated septum, including trauma, but the most common reason is no reason at all. It’s just the way your nose developed. What’s more important than how deviated your septum is is what’s happening in front of an around your septum.

Wings in Your Nose 

Turbinates are wing-like structures that attach to the sidewalls of the nasal cavity, opposite the midline nasal septum. They normally smooth, warm, humidify, and filter the air that you breathe, but they also become enlarged and produce mucous when inflamed. Turbinates also swell and shrink alternating from side to side, which is a normal neurologic process called the nasal cycle.

Is It An Infection or Allergies?

If you have allergies, a cold or any kind of infection, then your turbinates will swell up, clogging your nose with lots of mucous production. Contrary to popular belief, the color of the mucous has no relation to bacterial vs. viral infections.

Flimsy Nostrils 

Once you have inflammation and swelling inside your nose, for some people, depending on the configuration of your nose, your nostrils can literally cave in as you inhale. Different noses have differently shaped nostrils with various nostril thicknesses. The more narrow your nose, the more likely your nostrils can cave in. People who undergo cosmetic rhinoplasty are more at risk years later, since narrowing the nose can weaken the support structures of the nose.

A Nervous Nose? 

Some people’s noses are extra sensitive, especially to weather changes, like temperature, humidity, and pressure changes. Certain chemicals, scents and odors can set off a reaction as well. Many people mistakenly think this reaction is an allergy, but it’s really your nasal nervous system over-reacting to the weather or to odors. One of the most common reasons is from poor quality sleep, which causes a low-grade stress response, which can heighten your senses.

It’s All Under Your Nose

A chronically stuffy nose doesn’t happen by itself. Usually it’s part of a bigger picture, where the entire upper and lower jaws are more narrow and constricted, in addition to more narrow nasal cavities. I’ve described this process in my book, Sleep Interrupted, where due to modern human’s eating soft, mushy, processed foods, our jaws are much more narrow than normal, with dental crowding. Bottle-feeding, which is another modern, Western phenomenon, is also thought to aggravate this problem.

If you have a stuffy nose, it can also aggravate soft palate and tongue collapse when in deep sleep, due to muscle relaxation. With more obstruction, more stomach juices are suctioned up into the throat and nose, causing more swelling and more nasal congestion. All this from smaller and more narrow jaws. 

5 Reasons Why Your Nose is Stuffy

March 20, 2015

A repost of an article on why your nose is stuffy this allergy season.

Although many people assume that big nosed people naturally breathe better, there’s nothing further from the truth.  The shape and size of your nose is mostly cosmetic. How well you breathe actually depends on what your internal breathing passageways look like. And for many sleep apnea sufferers, a stuffy nose can make or break their treatment therapy.

Yet, opening up the nose through medical therapy or even surgery has been found to “cure” sleep apnea in only 10% of people. Patients will definitely feel and breathe better, but it’s unlikely that their sleep apnea is addressed definitively. However, I have seen many of the people in the “10%” group derive significant benefits from clearing up their nasal congestion. Besides breathing better for the first time in years, opening up the nose can allow the person to tolerate and benefit from other treatment options for OSA besides CPAP.

Why Is My Nose Stuffy?

Problem #1:  Deviated Nasal Septum

One of the more common reasons for a stuffy nose is due to a deviated nasal septum. A “septum” is a term that describes a structure that acts as a wall or separator between two cavities. Your heart has one too. No one has a perfectly flat or straight septum.

All septums, by definition, have slight irregularities or curvatures. A major reason for a crooked septum, unbeknownst to many people, even other doctors, is because your jaw never developed fully. Most people with sleep apnea have narrow upper jaws, which pushes up the roof of your mouth into your nasal cavity, which causes your septum to buckle.

If medical options don’t help you to breathe better through your nose, then you may be a candidate for a septoplasty. To get a much more detailed explanation about this procedure see the accompanying article, Myth and Truths About Septoplasty.

Problem #2. Flimsy Nostrils

In some people, the space between the nasal septum and the soft part of both nostrils is either too narrow to begin with, or they collapse partially or completely during inspiration. In many cases, this can be seen years after reduction rhinoplasty, where the nose was made smaller or narrowed for cosmetic reasons. Occasionally, people can have naturally thin and floppy nostrils.

Another common reason for flimsy nostrils is due to a narrow upper jaw. The width of your nose follows the width of your jaw. If the angle between the midline septum and the nostril sidewall is more narrow than normal, then it’s more likely to collapse with any degree of internal nasal congestion. It’s not surprising that people with sleep-breathing disorders will typically have narrower jaws, and thus more susceptible to nostril collapse. Certain ethnicities are also more prone to this phenomenon than others.

One way that you can easily tell if you have this problem is to perform the Cottle maneuver: Place both index fingers on your face just beside your nostrils. While pressing firmly against your face and simultaneously pulling the skin next to the nostril apart towards the outer corners of your eyes, breathe in quickly. Then let go and breathe in again. If there is a major improvement in your quality of breathing while performing this maneuver, then you have what’s called nasal valve collapse.

The simplest way of correcting nasal valve collapse is by using nasal dilator strips, or Breathe-Rite® strips. If you do the Cottle maneuver and there is no significant difference in your breathing, don’t waste money buying these strips. If you perceive an improvement in your breathing, you can continue using the strips at night while you sleep. For some people, these “strips” are not strong enough to hold up the nostrils, or may cause irritation to the skin.

There are also many other “internal” options available over the counter, including metal springs or plastic cones that are placed inside the nostrils. People tolerate these particular devices differently, so the only way to know if you’ll like them is to try them. Three examples are Breathe With EEZ, Nozovent, and Sinus Cones.

 To find out if your nasal valve collapse is from weak or flimsy cartilages or is aggravated by internal nasal congestion, you can spray nasal saline (which is a mild decongestant) into your nose. If your nostrils doesn’t collapse as much, then you need to address your internal nasal congestion first. A stronger over-the-counter medication that you can use is oxymetazoline, which is a topical spray decongestant. There are many brand name and generic versions that are sold that contain this ingredient. It’s very important that you don’t use this medication for more than two to three days—otherwise, you may get addicted to it.

If you want a permanent solution to this problem without having to use dilator strips or internal devices, the only option is surgery. The traditional way of dealing with this issue is to perform a kind of reconstructive rhinoplasty surgery, usually by taking small portions of your nasal septal cartilage or ear cartilage and placing in underneath the weakened portions of your nostril walls. A newer, simpler way of addressing this problem is by attaching a permanent suture just underneath the eye socket and tunneling the suture under the skin and looping it around the weakened area to suspend the nostril to prevent collapse.

Problem #3: Wings in Your Nose

Another common source of nasal congestion is from swelling of your nasal turbinates, which are the wing-like structures on the side-walls of the nasal cavity opposite the septum. Turbinates are comprised of bone on the inside and mucous membrane on the out- side. The area just underneath the mucous membrane is filled with blood vessels which can swell significantly. As the turbinates swell due to allergies, colds, or weather changes, the air passageways narrow further, especially if you have a mildly deviated nasal septum, and particularly if you have nasal valve collapse.

One of the most common misunderstandings that I see by both doctors and patients alike is that they think that swollen turbinates are polyps. The nasal turbinates can swell so much that you can sometimes see the reddish-pink, fleshy grape-like mass through your nostrils. Once decongested, they shrink dramatically and the air passageways open up again.

If conservative treatment including prescription allergy medications don’t work, various surgical options are available from very conservative 5 minute in-office procedures to more aggressive procedures that are performed in the operating room. These procedures are usually performed alongside a septoplasty to improve nasal breathing.

Problem #4: Sinusitis

If you suffer from sinusitis, this can cause nasal congestion and inflammation combined with post-nasal drip, sinus pressure, and pain. Put simply, pure misery. Sinus infections typically follow either a routine cold or allergy attack; they cause both swelling and blockage of the sinus passageways, leading to negative pressure initially and, if allowed to progress, can turn into a full-blown sinus infection, with yellow-green discharge, fever and severe facial pain. Your teeth can also hurt since the roots of the upper molars jut up into the floor of the maxillary sinuses. Similarly, dental pain can sometimes feel like sinus pain.

Fortunately, most cases of sinus congestion will eventually go away. The body has a remarkable ability to take care of these issues without any intervention. Sometimes bacterial infections occur, and with proper conservative treatment using saline and decongestants, the infection gradually resolves. Rarely, you may need an antibiotic to control stubborn bacterial infections.

Problem #5: Poor Sleep

As you can see from the above discussion, there are a number of various reasons for having a stuffy nose. But the most common reason for nasal congestion that I see routinely is due to inefficient breathing and poor sleep. This is why sleep apnea sufferers, more often than not, suffer relentlessly from nasal congestion. 

Without a doubt, structural reasons like allergies or nasal polyps can definitely block your nose and these issues must be dealt with appropriately. But in general, it’s the inflammation that’s created by a combination of your hypersensitive nasal nervous system and possible stomach acid regurgitation into the nose from multiple obstructions and arousals, that causes nasal congestion. Without addressing this underlying source of inflammation, correcting a deviated nasal septum or treating for nasal allergies will only provide a temporary solution.


Ask Dr. Park Your Question About Obstructive Sleep Apnea

March 3, 2015

My monthly Ask Dr. Park Teleseminars in years past were very popular with many of you. It was also a way for me to understand the frustrations and pains for those of you with obstructive sleep apnea. I truly enjoyed the live Q&A format, but due to recent time constraints from my new academic position, I’ve had to transition my telesemianrs to pre-recorded podcasts. My recent 3-part podcast series on Vitamin D and sleep with Dr. Stasha Gominak was extremely well-received, with well over 2000 downloads so far. 

As a way of connecting with you again, I’ve decided to re-launch my Ask Dr. Park series, but in a different format. Submit your one question in the text field below, and I’ll try to answer as many as I can. I will then select a handful of questions to answer on an upcoming Ask Dr. Park podcast. If possible, please state at least your first name, where you live, and a brief question. I’ll try to choose questions that can help as many people as possible. 

Please enter your question for Dr. Park below.

Podcast #5: Interview With Dr. Stasha Gominak on How Low Vitamin D Can Ruin Your Sleep (Part 3)

February 25, 2015

This is part 3 and the final segment of my conversation with Dr. Stasha Gominck, a neurologist with some very insightful information about vitamin d and how it’s vitally related not only to sleep, but to every aspect of your health. As mentioned previously, Vitamin D is actually a hormone that’s needed by every area of your body, including your brain. 
In this segment, Gominak is going to tell us
  • How to optimize growth hormone release
  • The link between slow wave sleep and the B vitamins
  • How this b vitamin can help REM behavior disorder 
  • How much Vit D is made in your skin by sunlight
  • Vitamin D’s anti-cancer properties
  • The importance of quality sleep and cancer prevention

Download MP3 audio file

NY Time article on Meditation for a Good Night’s Sleep.

Mindfulness meditation sites: calm.com, headspace.com, and saagara.com

CBT-i sites: cbtreferee, CBT-i coach and cbtforinsomnia

Visit Dr. Gominak at drgominak.com
Subscribe in iTunes. I would appreciate it if you can rate my podcast and provide feedback within iTunes.
Please leave your feedback or any comments about this episode in the space below.

Podcast #004: Interview With Dr. Stasha Gominak on How Low Vitamin D Can Ruin Your Sleep (Part 2)

February 19, 2015

This is Part 2 of my interview with Dr. Stasha Gominak, a neurologist practicing in Tyler, Texas. Dr. Gominak has unique views on how Vitamin D can significantly affect the quality of your sleep, independent of obstructive sleep apnea or upper airway resistance syndrome. In this intervew, she will reveal:

How B vitamins interact with Vitamin D
How B vitamins are related to fibromyalgia
The link between irritable bowel syndrome and headaches
How Vit D is linked with weight gain
What’s the right dose of B vitamins? And for how long?
Which vitamins are made in your gut?
 Download audio file
Visit Dr. Gominak at drgominak.com
Subscribe in iTunes. I would appreciate it if you can rate my podcast and provide feedback within iTunes.
Please leave your feedback or any comments about this episode in the space below.

« Previous PageNext Page »

The material on this website is for educational and informational purposes only and is not and should not be relied upon or construed as medical, surgical, psychological, or nutritional advice. Please consult your doctor before making any changes to your medical regimen, exercise or diet program. Some links may go to products on Amazon.com, for which Jodev Press is an associate member.

Flat UI Design Gallery

web hosting, website maintenance and optimization by Dreams Media